Problem 1.

Give an example of a graph $G=(V, E)$ with cycle space \mathcal{C} for which

$$
\operatorname{dim} \mathcal{C}=\#(E)-\#(V)+1,
$$

and give an example of another graph for which that is not the case. In what types of graph does this equality hold? Why?

Problem 2.

Recall that given a vector space V over field \mathbb{F}, its dual is defined to be $V^{*}:=\operatorname{Hom}_{\mathbb{F}}(V, \mathbb{F})$. Recall further that given another vector space W over \mathbb{F} and a linear transformation $T \in \operatorname{Hom}_{\mathbb{F}}(V, W)$, there is a natural induced map $T^{*}: W^{*} \rightarrow V^{*}$ such that $T^{*}(g)=g \circ T$ for all $g \in W^{*}$.

Now consider the double dual of a vector space, $V^{* *}:=\operatorname{Hom}_{\mathbb{F}}\left(V^{*}, \mathbb{F}\right)$. Given a map $T: V \rightarrow W$ (i.e., $T \in \operatorname{Hom}_{\mathbb{F}}(V, W)$), suggest a definition for its double dual, $T^{* *}$, and decide whether it should go from $V^{* *} \rightarrow W^{* *}$ or from $W^{* *} \rightarrow V^{* *}$. (Make sure to draw diagrams!)

Problem 3.

If M is a finite matroid, we can define the dual matroid M^{*} by taking the same underlying set and calling a set a basis in M^{*} if and only if its complement is a basis in M.

Verify that M^{*} is a matroid and that the dual of M^{*} is M.
(The dual can be described equally well in terms of other ways to define a matroid. For instance: A set is independent in M^{*} if and only if its complement spans M.)

